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Abstract
Symmetries have been used with great success to determine solutions of
differential equations with which they are associated. In addition to
reducing the order of the equation, one can also use the Lie algebra of the
symmetries to transform the equation into ‘canonical form’. The canon,
in this case, is determined by the ‘standard’ realization of the Lie algebra.
Following a comment in Olver P J (1995 Equivalence, Invariants and
Symmetry (Cambridge: Cambridge University Press)), we conjecture that
while Lie algebras may have non-equivalent realizations in the usual (point
transformation) sense, all realizations of the same Lie algebra are equivalent
when considered on the appropriate ordered jet space. We show how this
result can have useful implications for ordinary differential equations, including
linearization for equations thought to be inherently nonlinear.

PACS numbers: 02.20.−a, 02.30.Hq

1. Introduction

Sophus Lie made the remarkable observation that most differential equations solvable via
different (usually ad hoc) techniques had in common the property of invariance under a
(usually but not necessarily) point transformation. He exploited this property to develop a
method to treat (almost) all differential equations in a similar manner to Galois’ approach for
algebraic equations. In spite of not fully realizing his aim, his technique has proven to be
extremely useful in finding (invariably physically relevant) solutions to differential equations.

In order to utilize this beneficial property of differential equations, one looks for
symmetries which generate the necessary invariant transformations. Once this is achieved,
the symmetries are usually used to reduce the order of the equation (hopefully to a first order
equation which can be easily solved). The interested reader is referred to [1] and references
therein for full details.
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Table 1. Second-order equations admitting 2D Lie algebras.

Type [G1,G2] Symmetries Invariant equation

I 0 G1 = ∂x G2 = ∂u uxx = F(ux)

II 0 G1 = ∂u G2 = x∂u uxx = F(x)

III G1 G1 = ∂u G2 = x∂x + u∂u xuxx = F(ux)

IV G1 G1 = ∂u G2 = u∂u uxx = uxF (x)

Another important use of symmetries of differential equations is the transformation of
equations into ‘canonical’ form. As an example, let us consider a second-order differential
equation, E say, which is invariant under a 2D Lie algebra of symmetries. If the Lie algebra
is Abelian, i.e. the Lie bracket of the symmetries commute, then there are two ‘inequivalent’
canonical realizations of the Lie algebra—types I and II of table 1. This implies that this
equation, E, can only be transformed into one of the corresponding equations under a point
transformation. Indeed, the two equations invariant under the 2D Abelian Lie algebra cannot
be transformed into one another via a point transformation as their respective symmetries
cannot be transformed into each other under a point transformation. As a result, one usually
states that the two sets of symmetries constitute ‘inequivalent’ realizations of the same Lie
algebra.

In this paper, we show that the usual concept of ‘inequivalent’ realizations of Lie algebras
arises as a result of purely point transformation considerations. If the class of transformation
is allowed to lie in an appropriately ordered (n � 1) jet space, then all realizations of Lie
algebras are equivalent. (While a formal proof is not provided, we indicate why we believe
that this conclusion can be reached by extrapolation from simple examples.) In order to
demonstrate this, we need to prolong the usual vector fields (symmetries of the differential
equations) to arbitrary order. In general we work on an open subset M ⊂ X × U � R

p × R
q

of the space of p independent and q dependent variables. G will be a connected r-dimensional
local transformation group acting on this subset—this action induces an action on the nth order
jet bundle Jn = JnM denoted by G(n), the nth prolongation of G.

The action of G is generated by a vector field given by

X =
p∑

i=1

ξ i(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα
, (1)

while the induced action on Jn is generated by the nth order prolongation of (1) given by

pr(n)X = X +
q∑

α=1

∑
J

φJ
α (x, u(n))

∂

∂uα
J

. (2)

Here the second summation is over all multi-indices J = (j1, . . . , j�) with 1 � j� � p, 1 �
� � n and the coefficient functions in (2) are given by [1]

φJ
α (x, u(n)) = DJ

(
φα −

p∑
i=1

ξ iuα
i

)
+

p∑
i=1

ξ iuα
J,i . (3)

Here we confine ourselves to the Euclidean case (one independent and one dependent variable).
The plan of our paper is as follows. Firstly, we answer a question in [2, p 121] by showing

that all actions (real and complex) of SL(2) are equivalent. Thereafter we show that the same
result is true for the 2D Lie algebras in table 1. Finally we indicate why these results should
hold true in general and consider the implications of these results for differential equations.
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Table 2. Locally inequivalent actions of SL(2).

Type Generators/symmetries

I G1 = ∂x G2 = x∂x G3 = x2∂x

II G1 = ∂x G2 = x∂x − u∂u G3 = x2∂x − 2xu∂u

III G1 = ∂x G2 = x∂x − u∂u G3 = x2∂x − (2xu + 1)∂u

IV G1 = ∂x G2 = x∂x + u∂u G3 = (x2 − u2)∂x + 2xu∂u

2. Equivalence of SL(2) actions

Olver [2] recently posed the question of the equivalence of different (complex) actions of a
given transformation group via prolongation. This was motivated by his observance that the
three locally inequivalent actions of SL(2) on a two-dimensional complex manifold could be
related by this simple process.

If we take the first of the three (complex) actions in table 2 and prolong each of the
symmetries to first order, we obtain

G
[1]
11 = ∂x (4)

G
[1]
12 = x∂x − p∂p (5)

G
[1]
13 = x2∂x − 2xp∂p, (6)

where p = ux and G
[n]
ij refers to the nth prolongation of the j th symmetry in the type I

group action of table 2. We observe that (4)–(6) have the same form as the symmetries of the
type II group action, i.e. the transformation (x, u) �→ (x, ux) maps the type I action to the
type II action. The presence of ux in the transformation ensures that we are not dealing with
a point transformation but rather a generalized transformation.

The second prolongation of the type I symmetries is given by

G
[2]
11 = ∂x (7)

G
[2]
12 = x∂x − p∂p − 2q∂q (8)

G
[2]
13 = x2∂x − 2xp∂p − (4xq + 2p)∂q, (9)

where q = uxx . The transformation (x, u) �→ (x, uxx/(2ux)) maps the symmetries (7)–(9) to
those of the type III action. These results all appear in [2, 3].

The final action in table 2 is a real action and Olver [2] wondered if this too was equivalent
to the other complex actions, i.e., could it be obtained from the same source. Indeed this is
the case. It can be shown that the transformation

(x, u) �→
(

x +
2uxuxx

u4
x + u2

xx

,
2u3

x

u4
x + u2

xx

)
(10)

maps the symmetries (7)–(9) to those of the type IV action. (Note that the general
transformation has the form

(x, u) �→
(

x +
2α2(w + β)

ux(4 + α2(w + β)2)
,

4α

ux(4 + α2(w + β)2)

)
, (11)

where w = uxx

/
u2

x and α and β are arbitrary constants set to two and zero respectively to
obtain (10).) These transformations are summarized in table 3 which also includes some
higher order derivatives.
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Table 3. Transformations between SL(2) actions.

Type x u ux uxx

I → II x ux uxx uxxx

I → III x
uxx

2ux

−u2
xx − uxu3x

2u2
x

2u3
xx − 3uxuxxu3x + u2

xu4x

2u3
x

I → IV x +
2uxuxx

u4
x + u2

xx

2u3
x

u4
x + u2

xx

− 2u2
xuxx

u4
x − u2

xx

− 2ux

(
u4

x + u2
xx

)3 (
uxu3x − 2u2

xx

)
(
u4

x − u2
xx

)3 (
u4

x + 2uxu3x − 3u2
xx

)

3. Equivalence of the 2D actions

We now turn our attention to the two Lie algebras represented in table 1. In the case of the
Abelian Lie algebra we use the type II action as our starting point (since the nth prolongations
of the symmetries for the type I action are identical to the nonprolonged symmetries). Using
the first prolongation we find that the transformation which maps the symmetries of the type
II action with those of the type I action is (x, u) �→ (u − xux + f (x), ux + g(x)), where f

and g are arbitrary functions usually set to zero. (Note that, as the symmetries commute, the
transformations for x and u can be interchanged.)

In the case of the non-Abelian Lie algebra we take the first prolongation of the symmetries
of the type IV action and obtain the transformation (x, u) �→ (f (x)ux, u + g(x)ux) which
maps them to the symmetries of the type III action. (Again f and g are arbitrary functions, in
this case, usually taken to be one and zero respectively.)

4. General equivalence

In order to understand the equivalence of different realizations of Lie algebras, we need to
scrutinize the transformation equations more closely. Let us revisit the 2D non-Abelian Lie
algebra. In order to transform the type IV action (in variables x and u) to the type III action
(in variables X and U), we usually search for a transformation of the form

X = F(x, u) U = G(x, u) (12)

and so ensure that we are looking for a point transformation. The relevant transformation
equations are

Fu∂X + Gu∂U = ∂U (13)

u(Fu∂X + Gu∂U) = F∂X + G∂U . (14)

The first equation yields

F = f (x) G = u + g(x). (15)

Substituting this into the second equation leaves us with

u∂U = f (x)∂X + (u + g(x))∂U . (16)

While we can set g(x) to zero without any problems, the requirement that f (x) must also
be zero makes the transformation (12) meaningless. It is clear that we require an additional
term in (16) to ‘balance’ the f (x) term. One way of achieving this is to enlarge the class
of transformation to include higher order derivatives. Merely allowing F and G to include
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a dependence on ux and then taking the first prolongation of the symmetries of the type IV
action is sufficient: (12) now becomes

X = F(x, u, ux) U = G(x, u, ux) (17)

and we use the first prolongations

G
[1]
11 = ∂u (18)

G
[1]
21 = u∂u + ux∂ux

. (19)

The new transformation equations are

Fu∂X + Gu∂U = ∂U (20)

u(Fu∂X + Gu∂U) + ux

(
Fux

∂X + Gux
∂U

) = F∂X + G∂U . (21)

This time, the first equation yields

F = F(x, ux) G = u + g(x, ux). (22)

Now (21) becomes

u∂U + ux(Fux
∂X + gux

∂U ) = F∂X + (u + g)∂U . (23)

Here we can ‘balance’ all terms and obtain the transformation

(x, u) �→ (f (x)ux, u + g(x)ux) (24)

between the type IV and type III 2D Lie algebras.
This is not always the case as is evidenced by the presence of second derivatives in two

of the transformations in the case of SL(2). However, we can always ensure that the functions
in (12) are made general enough to include suitable nth order derivatives. By taking appropriate
nth prolongations of the symmetries, we will be able to map the symmetries of the different
realizations of the same Lie algebra to each other.

5. Discussion

We have indicated how ‘different realizations’ (i.e. not equivalent under a point transformation)
of the same Lie algebra can be made to be equivalent by extending our class of transformations
to the appropriate ordered jet space. That this non-equivalence at the point transformation level
is removed by the above extension is not that surprising. An examination of the methods used
to determine the different realizations of a particular Lie algebra reveals that the calculations
are usually restricted to functions of independent and dependent variables (see, e.g., [4]).
As a result, it is not surprising that these ‘different realizations’ can be made equivalent by
appropriate extensions. Thus we have the following conjecture: all actions of a particular
group are equivalent when these actions are prolonged to the appropriate nth ordered jet
space Jn.

In addition to being an interesting theoretical result, the above conjecture has useful direct
applications. This has already been seen in the remarkable results of [3]. Here we point to
useful consequences in the case of the 2D Lie algebras.

Let us revisit to the 2D Lie algebras. The equivalence transformations quoted above were
obtained purely from the algebras themselves. As a result, we did not place a restriction on their
forms. However, if we want to ensure that the equations are also transformed appropriately
(i.e. that the order is unchanged), it turns out that the general transformations quoted in
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Table 4. Transformations between 2D actions.

Type x̃ ũ ũx̃ ũx̃x̃ Restriction

II → I u − xux + f (x) ux + g(x) − 1

x

1

x2(fx − xuxx)
fx = −xgx

IV → III f (x)ux u + g(x)ux

g

f
− 1

f (fxux + f uxx)

1 + gx

g
= fx

f

section 3 are indeed too general. To ensure that the transformations are appropriate for the
second-order equations in table 1, i.e. that the transformed equations are again of second order,
we must impose some restrictions. Drawing from results in contact transformations, we insist
that the first derivatives of the transformation are free of second derivatives. Thus for the
mapping from the type II case to that of the type I case, namely

(x̃, ũ) �→ (u − xux + f (x), ux + g(x)), (25)

we must investigate dũ/dx̃. Here we find that
dũ

dx̃
= uxx + gx

−xuxx + fx

(26)

and so it can, at most, be a function of x only. This forces the relationship

fx = −xgx. (27)

Thus, the ‘usual’ practice of setting f (x) = g(x) = 0 will work here. We now have the
important result that the linear equation

uxx = F(x) (28)

and the nonlinear equation

ũx̃x̃ = F̃ (ũx̃ ) (29)

are related via (25) provided (27) holds.
Let us now consider the mapping from the type IV case to the type III case, namely

(x̃, ũ) �→ (f (x)ux, u + g(x)ux). (30)

The first derivative is
dũ

dx̃
= ux + gxux + guxx

fxux + f uxx

(31)

which, it turns out, can also only be a function of x. As a result, the relationship
1 + gx

g
= fx

f
(32)

must be satisfied. Here, the ‘usual’ practice of setting f (x) = 1 and g(x) = 0 will not work.
We now have that the linear equation

uxx = uxF (x) (33)

is related to the nonlinear equation

x̃ũx̃x̃ = F̃ (ũx̃ ) (34)

via (30) provided (32) holds. We summarize these transformations in table 4.
Thus, the equivalence of ‘inequivalent’ realizations of the same Lie algebra can be usefully

utilized to transform differential equations in each other. Here we have shown how two families
of nonlinear equations could be linearized. Clearly similar results can be obtained for other
Lie algebras. This work is ongoing.
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